{"items":["5fa8c584a1c92a0017a73692","5f973042d1fdb6001738e2c1","5f973042d1fdb6001738e2c0"],"styles":{"galleryType":"Columns","groupSize":1,"showArrows":true,"cubeImages":true,"cubeType":"max","cubeRatio":1.7777777777777777,"isVertical":true,"gallerySize":30,"collageAmount":0,"collageDensity":0,"groupTypes":"1","oneRow":false,"imageMargin":5,"galleryMargin":0,"scatter":0,"chooseBestGroup":true,"smartCrop":false,"hasThumbnails":false,"enableScroll":true,"isGrid":true,"isSlider":false,"isColumns":false,"isSlideshow":false,"cropOnlyFill":false,"fixedColumns":0,"enableInfiniteScroll":true,"isRTL":false,"minItemSize":50,"rotatingGroupTypes":"","rotatingCubeRatio":"","gallerySliderImageRatio":1.7777777777777777,"numberOfImagesPerRow":3,"numberOfImagesPerCol":1,"groupsPerStrip":0,"borderRadius":0,"boxShadow":0,"gridStyle":0,"mobilePanorama":false,"placeGroupsLtr":false,"viewMode":"preview","thumbnailSpacings":4,"galleryThumbnailsAlignment":"bottom","isMasonry":false,"isAutoSlideshow":false,"slideshowLoop":false,"autoSlideshowInterval":4,"bottomInfoHeight":0,"titlePlacement":["SHOW_ON_THE_RIGHT","SHOW_BELOW"],"galleryTextAlign":"center","scrollSnap":false,"itemClick":"nothing","fullscreen":true,"videoPlay":"hover","scrollAnimation":"NO_EFFECT","slideAnimation":"SCROLL","scrollDirection":0,"overlayAnimation":"FADE_IN","arrowsPosition":0,"arrowsSize":23,"watermarkOpacity":40,"watermarkSize":40,"useWatermark":true,"watermarkDock":{"top":"auto","left":"auto","right":0,"bottom":0,"transform":"translate3d(0,0,0)"},"loadMoreAmount":"all","defaultShowInfoExpand":1,"allowLinkExpand":true,"expandInfoPosition":0,"allowFullscreenExpand":true,"fullscreenLoop":false,"galleryAlignExpand":"left","addToCartBorderWidth":1,"addToCartButtonText":"","slideshowInfoSize":200,"playButtonForAutoSlideShow":false,"allowSlideshowCounter":false,"hoveringBehaviour":"NEVER_SHOW","thumbnailSize":120,"magicLayoutSeed":1,"imageHoverAnimation":"NO_EFFECT","imagePlacementAnimation":"NO_EFFECT","calculateTextBoxWidthMode":"PERCENT","textBoxHeight":26,"textBoxWidth":200,"textBoxWidthPercent":65,"textImageSpace":10,"textBoxBorderRadius":0,"textBoxBorderWidth":0,"loadMoreButtonText":"","loadMoreButtonBorderWidth":1,"loadMoreButtonBorderRadius":0,"imageInfoType":"ATTACHED_BACKGROUND","itemBorderWidth":0,"itemBorderRadius":0,"itemEnableShadow":false,"itemShadowBlur":20,"itemShadowDirection":135,"itemShadowSize":10,"imageLoadingMode":"BLUR","expandAnimation":"NO_EFFECT","imageQuality":90,"usmToggle":false,"usm_a":0,"usm_r":0,"usm_t":0,"videoSound":false,"videoSpeed":"1","videoLoop":true,"gallerySizeType":"px","gallerySizePx":1000,"allowTitle":true,"allowContextMenu":true,"textsHorizontalPadding":-30,"itemBorderColor":{"themeName":"color_12","value":"rgba(184,181,174,0)"},"showVideoPlayButton":true,"galleryLayout":2,"calculateTextBoxHeightMode":"MANUAL","targetItemSize":1000,"selectedLayout":"2|bottom|1|max|true|0|true","layoutsVersion":2,"selectedLayoutV2":2,"isSlideshowFont":true,"externalInfoHeight":26,"externalInfoWidth":0.65},"container":{"width":300,"galleryWidth":305,"galleryHeight":0,"scrollBase":0,"height":null}}

# The Catholic Eucharist is the Dirac Delta Function

Here's a humorous defense for the question (in the context of transubstantiation): "*if it's literally Jesus' body, then how is it that billions of Catholics haven't eaten all of him yet?*"

Evaluating this question involves non-Euclidean math. Here's the basic gist: the Catholic claim is that the Eucharist becomes a literal re-presentation of the actual flesh of Jesus during his ~6 hours on the cross. A Catholic argued that this is literally time travel. If the B-theory of time is true, then there is a 4D block of space-time that is 6 hours long, and contains the flesh of Jesus being crucified.

Let Vj(t) be the 3D volume of Jesus’ flesh for any given time-slice t.

Further assume that this volume is approximately constant such that for:

t = t0 to (t0 + 6 hours) → Vj(t) ≈ Vj.

In theory, the 6 hour space-time block can be sliced into an infinite number of infinitesimally small time slices. However, for any given time slice, no matter how small, Vj is non-zero. What happens then when we sum these slices?

Vj(t) + Vj(t+δt) → ∞ for lim(δt) → 0

Here’s an analogous case simplified to 2D: suppose we have a solid black square of 1" x 1". How long would it be if we stretched it out to a line of infinitesimal width while maintaining the area as constant? We start by reducing the width to half then iterate:

w = 0.5, h = 2.0

w = 0.25, h = 4.0

w = 0.125, h = 8.0

...

w → 0 , h → ∞

The Eucharist is the Dirac delta function.

Q.E.D.